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Introduction
Tropospheric ozone (O3) is a photochemi cal 
pollutant that has increased globally in 
concentration since the 19th century (Bogaert 
et al. 2009). Short- and long-term exposure to 
ambient O3 has been associated with a variety 
of adverse health outcomes, including respira-
tory, cardiovascular, and neurological condi-
tions and, possibly, increased mortality [Chen 
et al. 2007; Institut national de recherche et 
de sécurité pour la prévention des accidents 
du travail et des maladies professionnelles 
1997; Jerrett et al. 2009; U.S. Environmental 
Protection Agency (EPA) 2006].

Large population studies designed to 
assess the health risks of O3 exposure require 
accurate exposure estimates. The assess-
ment of the exposure of a population is a 
complex task because O3 exposure exhibits 
complex spatiotemporal patterns, which 
present considerable modeling challenges. 
Worldwide, modeling methods have been 
developed to improve the exposure assess-
ment of population studies and to capture 
small spatiotemporal variations in levels of 
pollutant such as O3 (Briggs 2005; Jerrett 

et al. 2005; Zou et al. 2009). For instance, 
land-use regression (LUR) models are used to 
predict pollutant concentrations at unmoni-
tored sites based on regression models of 
georeferenced covariates that predict observed 
(i.e., measured) data from monitored sites 
(Beelen et al. 2009; Jerrett et al. 2005). 
Kriging and the Bayesian maximum entropy 
(BME) framework are interpolation methods 
that assign a series of weights to observed 
monitoring station data to compute interpo-
lated values of pollutants at unmonitored sites 
(Bell 2006; Bogaert et al. 2009; Christakos 
and Vyas 1998; de Nazelle et al. 2010).

The main objective of this work was to 
compare the accuracy of three spatio temporal 
models to predict ground-level O3 in Quebec 
(Canada). We used a land-use, mixed-effects 
regression model developed with readily 
available data (air quality and meteorological 
monitoring data, road networks information, 
latitude) and two spatiotemporal interpolation 
models: a) a combined land-use BME model 
incorporating both O3 monitoring station data 
and the land-use mixed model outputs (BME-
LUR), and b) a kriging method based only on 

available data from O3 monitoring stations 
(BME kriging).

Methods
O3 monitoring data. We retrieved hourly 
ground-level O3 observations for 1990 
through 2009 from the National Air Pollutant 
Surveillance (NAPS) program (Environment 
Canada 2012) (Figure 1). We calculated only 
8-hr midday (0900–1700 hours) O3 concen-
trations during the summer months (May 
through September) because O3 concen-
trations during the winter and at night are 
almost null in Quebec, and we included data 
for all available days with < 25% missing 
data (i.e., days with hourly data for at least 
6 of the 8 hr).

In Quebec, the number of O3 moni-
toring stations increased from 2 stations 
in 1990 to a total of 50 stations available 
at the end of 2009. Up to 51 stations were 
available at some point in time during the 
period, resulting in 156,060 total observa-
tions (station-days). All stations had a limit of 
detection (LOD) of 1 ppb by 1995, and most 
stations had an LOD of 10 ppb before 1995. 
Measured 8-hr daily O3 levels were recorded 
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Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with 
 respiratory health effects including increased lung inflammation and permeability, airway hyper-
reactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a 
complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of 
exposure estimation, various spatiotemporal methods have been developed worldwide.

oBjectives: We sought to compare the accuracy of three spatiotemporal models to predict summer 
ground-level O3 in Quebec, Canada.

Methods: We developed a land-use mixed-effects regression (LUR) model based on readily avail-
able data (air quality and meteorological monitoring data, road networks information, latitude), a 
Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the 
land-use mixed model outputs (BME-LUR), and a kriging method model based only on available 
O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation 
and visually assessed the predictive capability of each model by examining the mean temporal and 
spatial distributions of the average estimated errors.

results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-
square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the 
BME kriging model (R2 = 0.414, RMSE = 9.164).

conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentra-
tions with BME can be greatly reduced by incorporating outputs from a LUR model developed 
with readily available data.
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as 0 ppb for 373 observations (station-days) 
during the study period, of which 355 obser-
vations were recorded before 1995, when less 
sensitive instruments were in use. However, 
these data were retained in our analyses 
because they represented only 0.02% of the 
observations used to develop the three models.

Road density data. We extracted road 
density data from the Digital Mapping 
Technology Inc. (DMTI) 2010 Road Layer 
Dataset (DMTI Canmap Streetfile version 
2010.3; DMTI Spatial Inc., Markham, 
Ontario, Canada) and retained major roads, 
primary and secondary highways, and freeways 
from all road layers. We measured the total 
kilometers of such roads within a 1-km buffer 
around the O3 stations and the road density 
was expressed in km/πkm2 (i.e., kilometers of 
road within a circular area with a 1-km radius).

Meteorological data .  We obtained 
meteoro logical data from the National 
Climatic Data and Information Archive of 
Environment Canada for May through 
September of 1990–2009 (Environment 
Canada 2011). We extracted mean 8-hr 
temperature (from 0900 to 1700 hours for 
days with ≥ 75% of the data available) and 
daily precipitation records for all weather 
stations in Quebec. Figure 1 shows the loca-
tions of all available meteoro logical stations.

Development of models. LUR mixed-
effects model. We developed a linear LUR 
mixed-effects model to predict O3 concen-
trations measured at monitoring sites using 
R software version 3.0.1 (R Project for 
Statistical Computing; http://www.r-project.
org/). The variables used in the model were 
temperature, precipitation, day of year, 
year, road density in a 1-km buffer area, and 
latitude. Temperature and precipitation data 
were from the weather station closest to each 
O3-monitoring site. We shifted and rescaled 
these variables to produce coefficients of a 
similar range and to render the intercept 
interpretable. Specifically, we subtracted 121 
from the numeric day of the year to shift its 
range from 121–274 to 0–153, subtracted 
1990 from the year to convert its range 
from 1990–2009 to 0–19, and subtracted 
4,995.9 (the minimum value) from the 
latitude variable to standardize its range to 
0–583.3 km (such that a latitude of 0 repre-
sents that latitude of the most southerly O3 
monitoring station.)

We used linear splines to model tempera-
ture (one knot at 18°C), road density (one 
knot at 15 km/πkm2), and latitude (one knot 
at 50 km) because their relationships with O3 
were not linear. We determined the number 
and location of the knots by visual inspection 
and selected linear splines over cubic splines 
to increase simplicity because the results were 
nearly as good (i.e., the root mean square 
difference between the prediction of the two 

models was < 0.81 ppb). Therefore, we repre-
sented associations with O3 by two model 
coefficients (one for each linear segment) for 
each of these variables.

We nested values within stations, which 
were treated as a random intercept. Thus, we 
estimated average 8-hr daily O3 concentra-
tions for each observed station-day as follows: 

O3 =  β0 + β1Xlow_temperature  
 + β2Xhigh_temperature + β3Xprecipitation  

 + β4Xdayofyear + β5Xyear  

 + β6Xlow_road + β7Xhigh_road  

 + β8Xlow_latitude + β9Xhigh_latitude  
 + ustation + ε, [1]

where X is the value of the variable for that 
station day, β is the coefficient for that 
variable, u is the random effect associated to 
that station, and ε is the remaining error of 
the station day.

BME-LUR and BME kriging analysis. We 
developed both BME kriging and BME-LUR 
models for a territory involving census districts 
of population density > 5 people/km2 in 2006 
(Statistics Canada 2007). This was to ensure 
that a large proportion of the Quebec popu-
lation would be covered by the study area, 
without including areas with very low popula-
tions. We created a 50-km buffer around our 
present study area to avoid any edge effects 

caused by a lack of data just outside a census 
district. Therefore, the selected study region 
was situated between approximately 42°–50°N 
latitude and 65°–80°E longitude, encompassing 
a total area of 103,110 km2 (Figure 1).

The “hard” data we used to develop the 
BME kriging and BME-LUR models were 
the measured O3 concentration data provided 
by the O3 monitoring stations for all eligible 
station-days during 1990 to 2009. “Soft” 
data refers to information that can be used to 
improve estimates by compensating for the 
limited amount of measured data. Usually, soft 
information is based on some a priori knowl-
edge of the physical processes that affect the 
spatiotemporal distribution of the pollutant. 
For our analysis, the soft data we used were 
O3 levels (and their respective normal errors) 
estimated from the land-use mixed-effects 
regression model for 1 km × 1 km grid cells 
within the study area for May–September 
2005, the year used as the reference year for 
cross-validation.

Soft data from the LUR model was 
composed of an O3 estimate for each location 
and an associated error estimate. The error 
estimated for each modeled point (each center 
of the 1 km × 1 km grid cell) was the sum of 
the squares of the standard errors from the 
fixed effects and the square of the standard 
deviation of the soft random intercept. For 

Figure 1. Geographical location of O3 monitoring (black circles) and meteorological stations (gray squares) 
in the study region (dark gray). Locations are for monitors used at any time during the study period.
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the O3 estimate itself (soft data), only the 
fixed portion of the LUR model was used to 
create a value because the mean random effect 
was 0. There were a total of 278,633 possible 
grid points per day (approxi mately 42 million 
spatiotemporal points were possible overall), 
with the O3 levels estimated using data 
from the closest meteorological station. Soft 
data were estimated only when all predic-
tors were available. It was impossible for a 
large portion (around 99%) of points to be 
estimated because of missing precipitation 
or temperature data at the closest monitor 
(mainly in the inhabited northern regions of 
our present study area). However, this did not 
influence the cross-validation analysis because 
that analysis was limited to the location of the 
O3 monitors that had sufficient soft data.

We treated kriging as a special case of 
the BME in which we used only hard data 
(i.e., station-days with O3 monitoring station 
data) without including soft data estimates 
from the LUR model, and thus we refer 
to this model as “BME kriging.” Because 
of the spatiotemporal nature of the model 
used, kriging in this instance refers to a 
spatiotemporal interpolation of O3, and not 
merely a spatial estimate. We implemented 
the BME-LUR and BME kriging analysis 
to estimate daily 8-hr average O3 levels at a 
1-km2 grid using Matlab 2007 (MathWorks, 
Natick, MA, USA) and the SEKS-GUI 
program, version 0.69.5 (Yu et al. 2007).

To account for short-term and small-
scale patterns in the O3 data and to remove 
any spatiotemporal autocorrelative patterns, 
we used a Gaussian detrending model 
(Yu et al. 2007) at a distance of 25 km and 
a temporal trend of 2 days. This detrending 
is used to facilitate the interpolation of the 
remaining stochastic structure of the data. 
Such detrending algorithms are common in 
spatial estimation techniques such as kriging. 
Although several detrending methods exist, 
the SEKS-GUI program provides the Gaussian 
detrending algorithm as its only detrending 
option. From visual inspection of time series 
of O3 levels at monitoring stations, and of 
spatial distributions of daily O3 levels across all 
stations, Gaussian detrending appeared to be 
a sufficient function to remove spatio temporal 
trends. The detrended data was then used as 
our stochastic spatiotemporal data set for BME 
kriging and BME-LUR modeling.

Ozone soft and hard data was not 
normally distributed. We therefore corrected 
soft and hard data using n-scores normaliza-
tion before analysis because a normal distri-
bution is a necessary condition for accurate 
estimation by the BME (Yu et al. 2007). 
We constructed a spatiotemporal covariance 
model to describe the stochastic processes 
affecting O3 levels after localized detrending. 
We used the resulting model for estimating 

the O3 values, followed by denormalization 
and retrending of the estimated value.

Cross-validation. We performed cross-
validation to test the predictive ability of the 
different models and to find the best predic-
tive model. Cross-validation was performed 
using data from 2005 as a sample year. We did 
cross-validation for summer days at each moni-
toring station for which a LUR model estimate 
could be created (n = 3,986 station-days 
points among 30 stations). In BME-kriging 
and BME-LUR, we removed all hard data 
for up to 1 year before each cross-validation 
date at each monitoring station, for the cross-
validation at that station. This was done to 
eliminate the effects of temporally near data. 
This approach allows for the assessment of the 
estimation accuracy in different space–time 
domains while avoiding the potentially biased 
interpretation of the estimation results induced 
by purely temporal auto correlation (Yu et al. 
2009). To perform our cross-validation, we 
removed a given station-day’s hard data and 
estimated it using the remainder of the data 
(i.e., leave-one-out validation). The soft data 
used for the cross-validation did contain the 
information from all stations (i.e., the station 
was not removed during the construction of 
the LUR) because removing individual stations 
from the leave-one-out analysis would have 
had a marginal effect on the construction of 
the LUR model and subsequent soft data [each 
station represents approximately 2% of the 
data (1/50 stations)].

We compared estimation errors (estimated 
values minus observations) across methods 
for each station-day versus the O3 values for 
that monitoring station at that time. We 
used root mean-square errors (RMSEs) to 
estimate the total magnitude of error. We 
also defined a percent change in mean square 
error (PCMSE) as used by de Nazelle et al. 
(2010), where the results correspond to the 
percent increased or decreased estimation 
accuracy of the O3 concentration prediction 
based on the LUR or BME kriging models 
compared with corresponding predictions 
based on the BME-LUR. We assessed visually 
for unusual spatial or temporal patterns in the 
distributions of the average estimated errors 
(estimated versus observed data).

Finally, we compared observed exceed-
ances of the 8-hr Canadian Ambient Air 
Quality Standard (i.e., 65 ppb) identified 

using monitoring station data to exceedances 
identified using model estimates. To do so, 
we first transformed monitored and estimated 
O3 data variables into binary variables (0 = no 
exceedance, 1 = exceedance) and compared 
the estimated exceedances to the observed 
exceedances using Cohen’s kappa measure 
of agreement.

Results
Table 1 presents the description of the data 
used for the development of the LUR model 
for the years 1990–2009. Predictors and 
O3 data were available at 39 O3 monitoring 
stations on 2,441 days. Because information 
was not available concurrently at all stations 
and all days, we used 29,685 spatiotemporal 
points (station-days) of 118,560 possi-
bilities (152 days × 20 years × 39 stations) 
to develop the model. These 29,685 points 
were spatiotemporal moments for which we 
concurrently had information on O3 levels, 
temperature, and precipitation. Eight-hour 
O3 concentrations ranged from 0 to 104 ppb, 
8-hr tempera tures ranged from –3.5 to 
33.9°C, daily precipitation ranged from 0 to 
123.8 mm/day, and road density ranged from 
0 to 25.4 km/πkm2. The range of latitude 
values was between 0 and 583.3 km.

The LUR model is summarized in 
Table 2. Considering the estimated effect size 
(see footnote of Table 2 for clarification on 
the calculation) of each variable, temperature, 
day of the year, and road density were the 
main predictors. In this model, coefficients for 
linear spline functions of temperature (≤ 18°C 
and > 18°C) were positively associated with 
O3 concentrations, whereas precipitation, day 
of the year, year, and coefficients for linear 
spline functions of low and high road density 
and of low latitude (< 50 km) were negatively 
associated with O3 levels. Overall, all predic-
tors had a significant association, except the 
coefficient of the linear spline function for 
high latitude. To better visualize the fixed 
effects, see the LOESS plots of bivariate 
relationships of these predictor variables in 
Supplemental Material, Figure S1. Every 
coefficient of the LUR model was in agree-
ment with the LOESS plots, and with known 
processes of the formation and the destruc-
tion of O3, except for cold temperature. Based 
on the LOESS plot, we expected tempera-
tures between –3.5°C and 18°C to have no 

Table 1. Descriptive statistics of variables used in developing the LUR model for 1990–2009.

Variable
No. of 

spatiotemporal pointsa Mean ± SD Minimum Maximum
8-hr O3 concentration (ppb) 29,685 31.2 ± 13.1 0.0 104.0
8-hr temperature (°C) 29,685 19.1 ± 5.3 –3.5 33.9
Precipitation (mm/day) 29,685 3.0 ± 7.1 0.0 123.8
Road density (km/πkm2) 39 6.4 ± 7.9 0.0 25.4
Rescaled latitude (km) 39 114.6 ± 134.6 0 583.3
aWe used 29,685 of 118,560 possible station-days (limited by temperature and precipitation variables).
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relation with O3, or the relation to be slightly 
negative, whereas in the LUR model, after 
controlling for latitude, year and day of the 
year, the relation between O3 and the lowest 
temperatures was slightly positive.

Table 3 describes the hard and soft data 
used to build the BME-LUR and BME 
kriging models. Hard data were observa-
tions at monitoring sites for 1990–2009 
(n = 103,669 of 156,060 station-days with 
O3 data), and predicted soft data estimates 
were derived from the fixed effect portion of 
the LUR model and errors estimated from the 
fixed and random effects of the same model 
for the year 2005 only (152 days). Therefore, 
we could estimate 90,847 spatiotemporal 
points from the LUR model, considering 
the availability of temperature and precipi-
tation information concurrently, of around 
42 million maximum possible spatiotemporal 
points (152 days × 278,633 possible grids 
points per day in the present study area). For 
BME kriging and BME-LUR, we used the 
same detrending and covariance structures to 
describe the spatiotemporal covariance pattern 
in the data. The covariance model used to 
fit the measured spatiotemporal covariance 
of the data consisted of two components: a 
short-term (2-day exponential) long-distance 

(100-km exponential) trend that described the 
majority of the variability (covariance = 0.9), 
and a second component (covariance = 0.1) 
describing the weekly (3-day cosinusoidal) 
trend in covariance in time with a small 
spatial (i.e., local 12.5-km exponential) scale 
because of the cyclic nature of O3 in urban 
stations in Quebec, where O3 tends to be 
lower on the weekends and to rise during 
weekdays. Modeled covariances as derived 
from the information above are presented in 
Supplemental Material, Figure S2.

Table 4 describes the cross-validation 
results for the three models for the year 2005 
at the 30 stations available to produce the 
soft data with all mixed model predictors 
(n = 3,980). For the BME-LUR, on 25 June, 
estimates at six stations, all located in the 
southeastern portion of the study area, could 
not be estimated with the BME-LUR. On 
that day, all measurements at these stations 
were high (hard data) (75–78 ppb) when 
compared with the range of values of the 
calculated soft data (28–48 ± 6.6 ppb) for that 
day. Overall, the BME-LUR was the most 
predictive model (R2 = 0.653), and had the 
lowest RMSE (7.06 ppb). The LUR model 
performed better and with greater precision 
(R2 = 0.466, RMSE = 8.747) than the BME 

kriging model (R2 = 0.414, RMSE = 9.164). 
The BME-LUR outperformed the LUR 
model and BME kriging by 19.9% and 
23.0% using PCMSE, respectively. Finally, 
the Cohen’s kappa of the BME-LUR (n = 18 
predicted exceedances; kappa = 0.525, 
95% CI: 0.495, 0.555) obtained from the 
comparison of 8-hr Canadian Ambient Air 
Quality Standard (65 ppb) monitored 
(n = 34 observed exceedances) and esti-
mated concentrations suggests moderately 
good agreement between the model and the 
measurements. The BME-LUR outperformed 
both BME-kriging (n = 39 predicted exceed-
ances; kappa = 0.169, 95% CI: 0.138, 0.200) 
and the LUR model (kappa = 0 because no 
predicted value was > 65 ppb).

A graph of the distribution of errors in 
the O3 concentration estimates generated 
by each model (i.e., the difference between 
estimated and observed values) based on the 
leave-one-out analysis also demonstrated 
that the BME-LUR was the more accurate 
model (Figure 2). As shown in Figure 3, the 
RMSE of the three models appears to be 
stochastic in time. Figure 4 shows that the 
RMSE of the BME-LUR in space (at all 
stations) was closest to zero in comparison 
with BME-kriging and the LUR. Figure 5 
represents a map of predicted mean daily O3 
levels (0900–1700 hours) and SEs at a 1-km 
grid across the greater Montreal region for 
the summers of 2006–2009. Levels of O3 
are higher around the suburbs of Montreal 
compared with downtown metropolitan areas 
and concentrations are also greater in places 
far from highways (Figure 5A). Moreover, a 
greater difference between observed and esti-
mated O3 concentrations may be found in 
the northeast of the greater Montreal region 
(Figure 5B).

Discussion
Overall, our findings suggest that error of 
estimation in the interpolation of O3 concen-
trations using the BME method may be 
improved with the inclusion of a LUR model 
developed with a readily available database.

We found that the estimation of O3 across 
monitoring sites was more accurate with 
the BME-LUR model compared with other 
models; this difference was close to 20% in R2 
and around 2 ppb in RMSE. These results are 
consistent with previous work. For instance, 
Yu et al. (2009) modeled air pollutant concen-
trations in North and South Carolina (USA) 
and found that the integration of soft informa-
tion by the BME method effectively increased 
the estimation accuracy for O3 predictions 
compared with estimates derived using BME 
kriging. Yu et al. (2009) used measurements 
from monitoring stations as soft data, whereas 
we created soft data from outputs of a LUR 
model. Yu et al. (2009) did not report the 

Table 2. Summary of the LUR model for O3 concentrations in the region of study (1990–2009).a

Fixed effect Coefficient SE Effect sizec

Constant 39.530 1.577 —
Temperature ≤ 18ºCb 0.218 0.021 39.461
Temperature > 18ºCb 2.139 0.019 —
Precipitation –0.010 0.001 –1.238
Day of the year –0.107 0.001 16.371
Year –0.165 0.018 3.315
Road density ≤ 15 km/πkm2b –0.255 0.098 –14.995
Road density > 15 km/πkm2b –1.074 0.219 —
Latitude ≤ 50 kmb –0.123 0.038 1.687
Latitude > 50 kmb 0.003 0.003 —
aFor the random effect, the SD of intercept is 2.464 (95% CI: 1.915, 3.170); the SD of residuals of mixed model is 8.904. 
bVariables modeled as linear spline functions to account for nonlinear relations with O3. cThe effect size was calculated 
by βiViMax – βiViMin for non-splined variables, and by βiLowerViSpline – βiLowerViMin + βiUpper (ViMax – ViSpline), where ViSpline is 
the value of the knot of the variable of interest, βiLower the coefficient for values lower than the knot value, and βiUpper the 
coefficient for values greater than the knot value.

Table 3. Statistics for measured (hard) O3 data (1990–2009) and predicted and error “soft” data from the 
LUR (year 2005) used for BME-LUR and BME kriging models.

Variables
No. of 

spatiotemporal points Mean ± SD (ppb) Minimum (ppb) Maximum (ppb)
Hard data (n = 51) 103,669a 30.6 ± 12.5 0.0 110
Soft data at a 1-km grid (predicted) 90,847b 46.3 ± 9.3 12.1 76.4
Soft data (error) 90,847b 6.9 ± 1.8 5.5 63.9
a103,669 of 156,060 station-days with O3 data (limited by O3 data availability only) as hard data for BME-LUR and BME 
kriging models. bWe estimated 90,847 spatiotemporal points with data for temperature and precipitation as soft data for 
2005 of approximately 42 million maximum possible spatiotemporal points (152 days × 278,633 possible grid points per 
day in the area of the present study).

Table 4. LUR, BME kriging, and BME-LUR models leave-one-station-out cross-validation results for year 
2005 [n = 30 O3 monitoring stations (3,980 estimated points)].

Method R 2 RMSE (ppb) PCMSE
LUR 0.466 8.747 –19.9%
BME kriging 0.414 9.164 –23.0%
BME-LUR 0.653 7.057 —
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R2 and RMSE values, but the mean and 
SD of their estimation errors for daily esti-
mates were similar to ours in the present 
study (Yu et al.: kriging = 0.483 ± 7.035 
and BME = 0.177 ± 6.845 ppm; present 
study: kriging = 0.414 ± 9.164 and 
BME-LUR = 0.653 ± 7.057). de Nazelle et al. 
(2010) also found better predictive accuracy 
for the representation of space-time O3 distri-
bution in North Carolina with a BME model 
based on observed (hard) and modeled (soft) 
data from a stochastic analysis of an urban-
intercontinental-scale atmospheric chemistry 
transport model, compared with kriging 
method estimates based on hard data only. We 
found that, similar to de Nazelle et al. (2010), 
O3 estimates for areas farther away from 
monitoring stations were more accurate when 
soft data was used in the BME versus kriging 
alone. As in our work, their PCMSE values 
were always negative (between –1.486 and 
–27.699, depending on the cross-validation 
radii of exclusion points), indicating that the 
integration of observed and modeled predic-
tion was consistently more accurate than 
relying solely on observations. Furthermore, 
agreement between modeled and observed 
Canadian Ambient Air Quality Standard 
exceedances was highest for estimates based on 
the BME-LUR.

We found that error estimates from the 
BME-LUR model were more accurate when 
monitoring stations were clustered in the 
region of the study, such as in the southern 
(i.e., more urban) part of Quebec (Figure 4). 
This result is consistent with results of Yu et al. 
(2009), which indicated that the locations 
where the estimates exhibit higher discrepan-
cies from the data values were mostly close to 
regions of data scarcity.

The LUR model was slightly more accurate 
(lower RMSE) than the BME kriging model 
(Table 4). Coefficients of the LUR model 
indicated that linear spline functions of 
temperature were positively associated with O3 
concentrations, whereas precipitation, day of 
the year, year, and coefficients for linear spline 
functions of low and high road density and of 
low latitude were negatively associated with O3 
levels (Table 2). The LUR model coefficients 
for the spline temperature variable are in line 
with the expected trend (U.S. EPA 2006) and 
suggest an increase of O3 with temperature, 
which is more pronounced at higher tempera-
tures. With regard to road density, both coef-
ficients for linear spline functions of low and 
high density were negative, and this may be 
explained by the fact that at the regional scale, 
low traffic represents lower concentrations of 
O3 precursors [traffic-related pollutants such 
as nitrogen oxides (NOx)], whereas at the local 
scale, low traffic represents lower destruction 
of O3. The other fixed effects of the LUR 
model are also in agreement with the known 
atmospheric processes of O3 and highlight that 
its formation rely on various factors such as 
sunlight. Ozone concentrations are also greater 
with altitude and show diurnal and weekly 
variations with higher levels during weekdays 
(Finlayson-Pitts and Pitts 1997; U.S. EPA 
2006). Finally, the negative coefficient found 
for day of the year variable highlight the small 
intra-annual decrease in O3 levels from May to 
September in Quebec.

Nevertheless, the fact that the LUR 
model was slightly more accurate than BME 
kriging is inconsistent with what was found 
by Beelen et al. (2009), who developed maps 
of O3 levels across the European Union using 
a regression model with altitude, distance to 

sea, major roads, high-density residential 
areas, and a combination of meteorological 
data as predictors. They obtained values of 
R2 = 0.54/0.38 and RMSE = 8.63/8.74 ppb 
respectively for the regression and kriging 
models at rural scale. At urban locations, 
kriging was more accurate than the regression 
model with only the high-density residential 
predictor (regression/kriging: R2 = 0.38/0.61 
and RMSE = 7.32/5.84). Kriging methods 
predict well when a dense and representa-
tive monitoring network is available (Briggs 
2005; Jerrett et al. 2005; Laslett 1994). In the 
present study, BME-LUR was more accurate 
in estimating O3 levels than LUR and BME 
kriging at urban and suburban scales (i.e., 
island of Montreal and its surrounding area), 
and LUR was more accurate than BME 
kriging in urban areas only (Figure 4). In 
Quebec, the monitoring station network is 
relatively sparse and the good correlations 
between the predictors used in the LUR 
model and the measured O3 concentrations 
at monitoring stations may at least partially 
explain the relatively weak performance of 
BME kriging.

We created maps representing mean O3 
levels (0900–1700 hours) and SE predic-
tions from the BME-LUR at a 1-km grid 
for the summers of 2006–2009 to visualize 
how the model would estimate O3 in urban 
and suburban areas of the greater Montreal 
region. As observed in Figure 5, levels of O3 
are higher around Montreal Island (suburban 
areas) compared with downtown metro-
politan (central Montreal Island) areas, and 
concentrations are also greater in areas far 
from highways. This may be explained by 
the fact that the efficiency of O3 production 
depends on NOx concentrations. In areas 

Figure 2. O3 mapping error estimates (RMSEs) from the leave-one-station-
out cross-validation [where error = estimated – measured (observed) O3 
concentration (in  ppb) at each monitoring station] based on the LUR 
(mean ± SD; 0.282 ± 8.93 ppb), BME kriging (0.130 ± 9.804 ppb), and BME-LUR 
(1.339 ± 7.086 ppb) models for the year 2005.
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Figure 3. Mean temporal O3 error estimates (RMSEs) based on the leave-one-
station-out cross-validation for LUR, BME kriging, and BME-LUR models for the 
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with low NOx concentrations (e.g., in rural 
areas), O3 production increases with higher 
levels of NOx. In downtown metropolitan 
areas where the highest NOx concentrations 
may be found, a net destruction of O3 by 
reaction with NO (nitrogen monoxide) has 
been reported (U.S. EPA 2006). Also, we 
found a greater difference between observed 
and estimated O3 concentrations in the 
northeast of the greater Montreal as indicated 
by Figure 5B, and this may be explained by 
the possible incongruity between soft and 
hard data points, hard data points themselves, 
or by a possible lack of O3 stations outside 
the Montreal area.

As mentioned previously, 6 stations 
could not be computed with the BME-LUR 
on June 25th. In-depth analysis reveals that 
all these stations had high monitored values 
(hard data) when compared with the range of 
values of the calculated soft data for that day. 
To our knowledge, this issue has not been 
reported elsewhere in the literature and inves-
tigations of BME estimation failure should be 
realized in future studies.

The developed BME-LUR model 
presents other limitations. For instance, the 
meteoro logical variables, temperature and 
precipitation, used to estimate soft data do 
not represent the complete atmospheric 
processes of O3. This would have been 
more correctly assessed with the use of some 
integrated meteorology models such as the 
CMAQ (Community Multiscale Air Quality) 
modeling system. However, such models do 
not capture small area estimations such as our 
LUR model predictions (U.S. EPA 2012). 
Another limitation is that the LUR model 
predictions were only estimated for each 
1-km grid of the territory because of compu-
tational constraints, as adding soft data at 
100-m resolution would have dramatically 
increased the amount of time needed to run 
the BME-LUR. Computational time required 
to create maps is another limitation. In the 
present study, 90 days were needed to create 
maps of O3 levels for an area of 103,110 km2 
at a resolution of 1 km while running multiple 
processors on a high-powered computer 
(2.93 GHz 4-core processor and eight concur-
rent threads with 6 GB RAM). This computa-
tional time can be improved by reducing the 
resolution of the study area or the number of 
soft data points, as well as by estimating only 
points of interest (e.g., residential addresses of 
interest vs. a 1-km grid).

Despite the computational demands, the 
BME-LUR adds value to the O3 exposure 
estimation because it generates the complete 
probability distribution of exposure at each 
point in space and time (Yu et al. 2007) and 
it reduces the estimation errors. This may 
lead to less biased effect measures and greater 
statistical power in health studies (Baker 

and Nieuwenhuijsen 2008; Briggs 2005; 
Goldman et al. 2012 ).

For implementation in future health 
studies, the BME-LUR might be improved 

by including additional predictors in the 
LUR model, such as population density, land 
use, topography, and industrial sources of 
precursors (Hoek et al. 2008). As noted by 

Figure 4. Spatial distribution of mean O3 error estimates (RMSEs) in the study area (year 2005) based on 
the leave-one-station-out cross-validation for LUR (A), BME kriging (B), and BME-LUR (C) models.

Montreal

LUR
0 250 500 km

0 250 500 km

0 250

RMSE (ppb)
High : 20

Low : 0

Water

500 km

BME-LUR

BME kriging

Montreal

Montreal

Figure 5. Mean O3 levels (0900–1700 hours) (A) and SEs (B) predicted from the BME-LUR at a 1-km grid 
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Beelen et al. (2009), stratification of the study 
area (e.g., separating urban and rural areas) 
could also improve model predictions.

Conclusions
We aimed at comparing the ability of three 
spatiotemporal models to predict ground-
level O3 in Quebec (Canada) to improve O3 
health risks assessment. The BME-LUR model 
appeared to be the best model for exposure 
prediction. This work illustrated the accuracy 
of the BME-LUR models to predict air 
pollutants such as O3 across space and time 
over LUR and BME kriging methods and 
that error of estimation in the interpolation 
of O3 concentrations can be greatly reduced 
using outputs from a LUR model that can be 
 developed with readily available data.
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